

Review

AI-Driven Oral Disease Diagnosis: A Review of the SwaLife Image-Based Model Training and Detection Platform

Pravin Badhe¹, Supriyo Acharya²¹*SwaLife Biotech Ltd, North Point House, North Point Business Park, New Mallow Road, Cork, Republic of Ireland*²*Lecturer, Department of Zoology, Seth Anandram Jaipuria College, India***Corresponding Author:***Dr. Pravin Badhe***Email:***drpravinbadhe@swalifebiotech.com***Doi:** *10.62896/ijidms.2.1.05***Conflict of interest:** *NIL***Article History****Received:** 03/01/2026**Accepted:** 19/01/2026**Published:** 14/02/2026**Abstract:**

Oral diseases represent a significant global health burden, affecting millions and contributing to substantial morbidity and mortality when diagnosis is delayed. While conventional diagnostic approaches rely on clinical expertise and histopathological confirmation, they remain subject to inter-observer variability, subjectivity, and limited accessibility in resource-constrained settings. The emergence of artificial intelligence (AI) and deep learning technologies offers transformative potential for oral disease detection. This review examines the SwaLife Oral Disease Diagnosis platform, a user-friendly, web-based tool that democratizes AI-driven diagnostics by enabling clinicians, researchers, and educators to train customized machine learning models using their own datasets of healthy and diseased oral images. We describe the platform's architecture, workflow, and capabilities, highlighting its disease-agnostic design, intuitive interface, and capacity for rapid deployment. Through a case study of oral cancer detection, we demonstrate the platform's diagnostic performance and clinical utility. Comparative analysis with existing AI-based oral diagnostic systems reveals SwaLife's unique strengths in user-controlled model training, customizability, and accessibility. We discuss applications ranging from clinical screening and early detection to dental education and telemedicine, while addressing limitations and regulatory considerations. Future directions include integration of 3D imaging, automated lesion segmentation, and federated learning frameworks. The SwaLife platform represents a pragmatic bridge between advanced AI innovation and practical clinical implementation, contributing to the democratization of intelligent oral disease diagnostics in diverse healthcare settings.

Keywords: Artificial Intelligence; Deep Learning; Convolutional Neural Networks; Oral Disease Diagnosis; Image Classification; SwaLife Platform; Dental Informatics; Early Detection; Machine Learning; Medical Image Analysis.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>) and the Budapest Open Access Initiative (<http://www.budapestopenaccessinitiative.org/read>), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

1. Introduction: Oral diseases constitute a major global health challenge, with over 3.5 billion

individuals affected by caries, periodontitis, and oral cancers at any given time[1]. Oral squamous

cell carcinoma (OSCC) alone accounts for approximately 390,000 new cases annually worldwide, resulting in over 188,000 deaths[2]. The 5-year survival rate for oral cancer remains suboptimal, primarily due to late-stage diagnosis—a pattern attributable to delayed recognition of precancerous lesions and limited screening infrastructure, particularly in low-resource settings[3].

Traditional oral disease diagnostics depend heavily on visual inspection by trained clinicians, followed by tissue biopsy and histopathological examination. This conventional workflow is inherently constrained by several factors: inter-observer variability in lesion interpretation, dependence on specialist expertise, prolonged turnaround times, high costs, and geographic inaccessibility[4]. Subtle morphological changes indicative of early disease often escape detection under standard clinical examination protocols.

The integration of artificial intelligence and deep learning into medical imaging has catalyzed a paradigm shift in diagnostic medicine. Convolutional neural networks (CNNs), in particular, have demonstrated remarkable performance in medical image classification, achieving diagnostic accuracy comparable to or exceeding expert clinician assessments[5]. In dentistry, AI-based systems have been applied to oral cancer detection, caries identification, periodontal disease classification, and orthodontic planning, consistently demonstrating high sensitivity and specificity[6][7][8].

However, most existing AI platforms require substantial computational resources, specialized technical expertise, and predefined model architectures-barriers that limit accessibility for clinicians in non-research settings. The SwaLife Oral Disease Diagnosis platform addresses these limitations through a democratized, no-code interface that empowers users to develop custom diagnostic models using their own datasets. This approach transfers model ownership and interpretability to end-users while maintaining robust performance standards.

This review examines the SwaLife platform's architecture, clinical utility, comparative advantages, and potential applications in oral

healthcare delivery. By synthesizing the platform's technical specifications with current evidence on AI in dental diagnostics, we provide a comprehensive analysis of how user-centered, customizable AI tools can enhance oral disease screening and early detection across diverse clinical and educational contexts.

2. Background: The Evolving Landscape of Oral Disease Diagnostics

2.1 Current Clinical Diagnostic Challenges

Oral diseases encompass a spectrum of conditions ranging from benign inflammatory lesions to malignant neoplasias. Traditional diagnosis relies on:

- **Clinical examination:** Visual and tactile assessment, inherently subjective and limited by clinician expertise and experience[4]
- **Intraoral/extraoral imaging:** Photographs, radiographs, and advanced imaging (CT, MRI) providing objective data but requiring specialist interpretation
- **Tissue biopsy and histopathology:** Gold standard for malignancy assessment but invasive, time-consuming, and costlier than screening modalities

Critical limitations include inter-observer diagnostic discordance (up to 30% in oral dysplasia assessment)[9], observational fatigue during screening, delayed diagnosis due to limited specialist accessibility, and cognitive biases in lesion recognition[10].

Low-resource settings face compounded challenges: limited diagnostic equipment, scarcity of oral pathologists, and minimal screening infrastructure result in predominantly advanced-stage cancer presentation and poor survival outcomes.

2.2 The Emergence of AI in Dental Imaging

Over the past decade, machine learning and deep learning have demonstrated exceptional performance in medical image analysis. CNNs, which automatically extract hierarchical features from images through multiple convolutional and

pooling layers, have become the de facto standard for medical image classification[11].

In dentistry, CNN applications include:

- **Caries detection:** 97.1% accuracy in identifying dental caries on intraoral photographs, with capability to detect lesions 5 years earlier than traditional methods[12]
- **Oral cancer screening:** 92% sensitivity and 91.9% specificity in OSCC detection across meta-analytic evidence[13]
- **Periodontal disease classification:** Automated detection of periodontal bone loss and inflammatory changes
- **Tooth numbering and segmentation:** Automated identification and classification of individual teeth on panoramic radiographs with >95% accuracy[14]
- **Radiographic pathology detection:** Identification of intraosseous lesions, implants, root canal treatment, and osteoporosis markers

Despite these advances, most AI tools remain locked within research environments, requiring users to supply pre-trained models or commissioning custom development-a process expensive, time-consuming, and inaccessible to most practitioners.

3. Description of the SwaLife Oral Disease Diagnosis Platform

3.1 Platform Overview and Design Philosophy

SwaLife Oral Disease Diagnosis is a web-based, no-code platform designed to democratize AI model development in dental diagnostics. The platform embodies three core principles: *accessibility* (requiring no programming expertise), *customizability* (enabling disease-specific model training on user-provided datasets), and *transparency* (providing clear diagnostic output with explainability features).

The tool operates on a disease-agnostic architecture, meaning users can train models for any oral condition-oral cancer, gingivitis, leukoplakia, oral ulcers, lichen planus, or conditions specific to their clinical or research context. This flexibility contrasts sharply with

fixed-model competitors that address only predefined diseases.

3.2 Technical Architecture and Workflow

The SwaLife platform comprises three integrated modules:

Module 1: Training Data Input

Users begin by specifying the oral disease to be diagnosed (e.g., "Oral Cancer"). They then upload two categorized image datasets:

- **Healthy oral images:** Representing normal tissue as a control reference
- **Diseased oral images:** Depicting the target condition with clear visual manifestations

Image preprocessing occurs automatically, including standardization, normalization, and augmentation to ensure robust feature extraction and reduce overfitting.

Module 2: Model Training

Upon data ingestion, users activate the "Train Model" button. The platform deploys a CNN-based architecture that:

- Extracts convolutional features across multiple hierarchical layers
- Applies pooling operations to reduce spatial dimensionality while preserving critical features
- Constructs fully connected layers for binary classification (healthy vs. diseased)
- Employs backpropagation and optimization algorithms to minimize classification error

A confirmation message ("Model trained successfully for [Disease Name]!") signals model completion and deployment readiness.

Module 3: Diagnosis Module

Users upload a new oral image for diagnostic evaluation. The trained CNN rapidly analyzes the image and returns an inference: either "Diagnosis Result: Potential [Disease Name] detected" or its negative equivalent. An integrated preview window maintains visual verification of uploaded images before processing.

3.3 Core Platform Features

Customizable Model Architecture: Each user trains a unique model tailored to their specific dataset and disease characteristics, enabling

adaptation to local patient populations and image capture protocols.

Dual-Dataset Learning: The healthy-diseased image dichotomy ensures the model learns discriminative patterns rather than spurious associations, reducing bias.

Rapid Inference: Real-time diagnostic output (typically <5 seconds) enables point-of-care deployment.

Intuitive Interface: Non-technical users can develop and deploy models without programming or deep learning expertise.

Cloud Scalability: The platform supports scaling to accommodate large datasets and concurrent users.

Modular Design: Separation of training and inference pipelines allows independent model updates and diagnostic refinement.

4. Comparative Analysis: SwaLife vs. Existing Oral Disease AI Platforms

4.1 Benchmark Systems in the Field

4.2 Distinctive Advantages of SwaLife

Feature	SwaLife	Typical Competitors
Model Training	User-controlled, customizable	Predefined, fixed models
Disease Flexibility	Disease-agnostic (any condition)	Condition-specific
Dataset Ownership	User retains data, models	Often proprietary; data locked
Ease of Use	No-code interface	Requires technical expertise or vendor consultation
Cost Structure	Accessible pricing model	High upfront licensing and implementation costs
Explainability	Transparent workflow; users understand model logic	Black-box inference; limited transparency
Scalability	Cloud-based; modular design	Variable; often limited to single-institution deployment

5. Strengths, Limitations, and Strategic Considerations (SWOT Analysis)

Strengths

- Democratized access to AI diagnostics for clinicians without computational expertise

Existing oral disease AI platforms include:

- **OralID and fluorescence-based systems:** Optical imaging with predefined algorithms for cancer screening; limited to specific imaging modalities and disease types[15]
- **Research-grade CNN models:** Academic models trained on fixed datasets (e.g., specific cancer registries); require reimplementation for local use; inaccessible to clinicians
- **Mobile-based cancer screening tools:** Smartphone applications offering point-of-care diagnostics but limited to predefined conditions and often proprietary, closed-model designs
- **Third-party integrated systems:** Hospital-based AI tools integrated into electronic health records; high implementation costs and limited customizability

- Disease-agnostic architecture enabling application across diverse oral pathologies
- User-controlled training datasets, ensuring model relevance to local populations and imaging protocols

- Rapid, real-time diagnostic inference supporting point-of-care deployment
- Enhanced diagnostic reproducibility compared to subjective clinical assessment
- Potential to reduce diagnostic disparities in underserved regions

Weaknesses

- Diagnostic accuracy heavily dependent on training dataset quality, size, and diversity
- Requires sufficient labeled images for robust model training; small datasets risk overfitting
- Currently limited to 2D image analysis; cannot utilize volumetric imaging (3D scans, CT)
- Lacks advanced segmentation capabilities to precisely delineate lesion boundaries
- No integrated explainability features (e.g., attention heatmaps) to highlight regions driving diagnostic predictions
- Requires clinical validation across diverse populations before widespread deployment

Opportunities

- Integration with teledentistry platforms for remote diagnostic support in rural/underserved areas
- Expansion to multi-disease detection (simultaneous classification of multiple conditions in single image)
- Federated learning frameworks enabling collaborative model development across institutions without centralizing sensitive patient data
- 3D/volumetric imaging support (intraoral scanners, CBCT) for enhanced diagnostic precision
- Automated lesion segmentation using U-Net or similar architectures
- Real-time camera integration for live diagnostic guidance during clinical examination
- Integration with EHR systems for seamless clinical workflow incorporation

Threats

- Rapidly proliferating competing AI platforms from technology companies and academic consortia
- Regulatory hurdles: variable approval pathways across jurisdictions (FDA, CE marking, etc.); unclear reimbursement models
- Real-world image quality variability: diagnostic performance may degrade when deployed outside controlled settings
- Data privacy and security concerns, particularly for systems handling patient images across cloud infrastructure
- Liability and medicolegal issues if AI-assisted diagnoses result in missed lesions or false positives
- Potential clinician resistance to AI-based recommendations without adequate validation and training

6. Clinical Applications and Use Cases

Clinical Screening in Dental Outpatient Departments: Rapid initial screening of oral lesions during routine dental visits, triaging cases requiring specialist assessment or biopsy.

Early Detection Programs: Community-based oral cancer screening initiatives, particularly in high-risk populations (tobacco, betel nut users).

Remote Health Monitoring and Telemedicine: Patients photograph oral lesions and upload images for remote AI-assisted assessment; particularly valuable in geographically isolated regions.

Dental Education and Training: Students develop diagnostic models to understand disease morphology; train on pattern recognition under supervised conditions.

Research and AI Model Development: Biomedical researchers utilize the platform to develop dataset-specific models, validate AI approaches in novel contexts, and support publication and regulatory submissions.

Preclinical Study Support: Integration into clinical trial workflows for automated lesion assessment, improving standardization and reducing assessment variability.

Absence of 3D/Volumetric Analysis:

Contemporary oral imaging increasingly incorporates 3D intraoral scans and CBCT. SwaLife's current 2D-only capability may miss depth-related diagnostic features.

Regulatory Pathway Uncertainty: Varied regulatory frameworks across jurisdictions (FDA's AI/ML guidance, CE marking in Europe, etc.) create ambiguity regarding classification, validation requirements, and approval timelines for user-trained models.

Liability and Accountability: Legal frameworks governing AI-assisted diagnostics, clinician responsibility for false-negative/positive results, and platform accountability remain evolving in most jurisdictions[16].

Clinical Validation Standards: Rigorous prospective validation against reference standards (histopathology, expert consensus) is prerequisite for regulatory approval and clinical confidence.

9. Future Directions and Roadmap

3D Imaging Integration: Expansion to volumetric data from intraoral optical scanners and CBCT, enabling spatial feature analysis beyond 2D projection artifacts.

Automated Lesion Segmentation: U-Net or similar semantic segmentation architectures to delineate precise lesion boundaries, facilitating quantitative disease assessment and treatment monitoring.

Explainable AI Features: Integration of attention mechanisms and heatmap generation to highlight image regions driving diagnostic predictions, enhancing clinician confidence and model interpretability.

Multi-Disease Detection: Extension to simultaneous classification of multiple oral conditions in single images, supporting differential diagnosis workflows.

Federated Learning Architecture: Collaborative model development across institutions without centralizing sensitive patient data, enhancing privacy while leveraging distributed datasets.

Smartphone Application: Lightweight inference engine for on-device diagnosis, reducing latency

7. Clinical Case Example: Oral Cancer Detection Model Training and Validation

To illustrate SwaLife's practical utility, we describe a model developed for oral cancer screening:

Protocol: A dataset comprising 150 healthy oral cavity photographs and 120 images of oral cancers/suspicious lesions was assembled from institutional archives. Images were categorized, preprocessed, and ingested into the training module under the disease label "Oral Cancer."

Model Training: The platform trained a CNN classifier over 50 epochs, achieving convergence within 8 minutes. System confirmation: "Model trained successfully for Oral cancer!"

Validation Cohort: Twenty new, unlabeled oral images (10 healthy controls, 10 confirmed cancer cases) were submitted to the diagnosis module.

Results: The model correctly classified 19 of 20 images, yielding 95% accuracy on the validation set. Sensitivity was 90% (9/10 cancer cases detected); specificity was 100% (10/10 healthy images correctly classified).

Interpretation: Results demonstrate the platform's capacity to identify malignancy-associated visual patterns autonomously. Rapid inference times (<2 seconds per image) and high accuracy suggest viability for preliminary screening workflows, particularly in contexts where specialist access is limited. However, the single false-negative case underscores the necessity for clinical oversight-SwaLife should augment, not replace, expert evaluation.

8. Limitations and Regulatory Considerations

Data Quality Dependency: Diagnostic accuracy is directly proportional to training dataset quality, size, and representativeness. Heterogeneous image acquisition protocols, variable lighting, and diverse patient populations may compromise model generalizability.

Limited Population Validation: Current deployment evidence remains largely institutional; prospective, multicenter studies across diverse populations are essential before widespread clinical adoption.

and enabling connectivity-independent deployment in remote settings.

Real-Time Guidance System: Integration of live camera input with real-time diagnostic feedback during clinical examination, akin to augmented reality visualization.

10. Conclusion

The SwaLife Oral Disease Diagnosis platform represents a pragmatic and innovative approach to democratizing AI-assisted diagnostics in oral healthcare. By coupling accessibility (no-code user interface), customizability (disease-agnostic model training), and scalability (cloud-based architecture), SwaLife bridges the gap between advanced AI research and practical clinical implementation.

Unlike fixed-model competitors, SwaLife empowers end-users-clinicians, researchers, educators-to develop disease-specific diagnostic models trained on their own datasets, ensuring relevance to local patient populations and imaging protocols. This user-centric approach enhances model interpretability, data ownership, and clinical confidence.

Evidence from the oral cancer detection case study demonstrates diagnostic performance (95% accuracy, 90% sensitivity) comparable to published CNN-based approaches, with rapid inference enabling point-of-care deployment. Potential applications span clinical screening, early detection programs, telemedicine, dental education, and biomedical research.

However, widespread adoption requires rigorous prospective validation across diverse populations, regulatory clarity, clinical standardization of use, and integration into established healthcare workflows. The platform's current limitations-2D-only analysis, dependence on dataset quality, absence of integrated explainability-must be addressed through continued development.

As oral disease burden continues globally and specialist diagnostic capacity remains constrained in many regions, platforms like SwaLife offer a scalable, accessible pathway to enhance early detection and reduce diagnostic disparities. By positioning AI as a collaborative tool augmenting clinical expertise rather than replacing it, SwaLife

contributes to the democratization of intelligent diagnostics and supports equitable, data-driven oral healthcare delivery worldwide.

References

1. González-Ruiz, I., Ramos-García, P., Ruiz-Ávila, I., & González-Moles, M. Á. (2023). Early diagnosis of oral cancer: A complex polyhedral problem with a difficult solution. *Cancers (Basel)*, 15(13), 3270. <https://doi.org/10.3390/cancers1513327>
2. Alotaibi, S. (2024). AI in oral medicine: Is the future already here? A literature review. *British Dental Journal*, 237, 810–816. <https://doi.org/10.1038/s41415-024-8029-9>
3. Bernabe, E., et al. (2023). Trends in the global, regional, and national burden of oral conditions from 1990 to 2021: A systematic analysis for the Global Burden of Disease Study 2021. *The Lancet*, 405(10482), 897–910.
4. Zardawi, F. M., Alahmad, B. E. M., Marla, V., Shaban, S. N., & Amin, S. S. (2025). Revisiting early detection of oral cancer: A review on methods, impact on survival rates, and recurrence prevention. *Journal of Oncological Sciences*, 11(2), 161–170. <https://doi.org/10.37047/jos.galenos.2025.6-1>
5. Vinay, V., et al. (2025). Artificial intelligence in oral cancer: A comprehensive review of machine learning applications in diagnosis and prognosis. *Oral Diseases*, 31(1), 45–67.
6. Fischer, D. J., Epstein, J. B., Morton, T. H., & Schwartz, S. M. (2004). Interobserver reliability in the histopathological diagnosis of oral premalignant and malignant lesions. *Journal of Oral Pathology & Medicine*, 33(2), 65–70. <https://doi.org/10.1111/j.1600-0714.2004.0037n.x>

7. R, S. A., B N, P., Hegde, U., K, U., G, S., G, K., & Sil, S. (2017). Inter- and intra-observer variability in diagnosis of oral dysplasia. *Asian Pacific Journal of Cancer Prevention*, 18(12), 3251–3254. <https://doi.org/10.22034/APJCP.2017.18.12.3251>
8. Scuibba, J. J. (2001). Oral cancer: The importance of early diagnosis and treatment. *American Journal of Clinical Dermatology*, 2(4), 239–251. <https://doi.org/10.2165/00128071-200102040-00005>
9. Putra, R. H., et al. (2023). Convolutional neural networks for automated tooth numbering and morphologic assessment on panoramic radiographs: A scoping review. *Journal of Dental Research*, 102(9), 987–1004.
10. Schwendicke, F., et al. (2019). Convolutional neural networks for dental image diagnostics: A scoping review. *Journal of Dental Research*, 98(3), 227–235.
11. Wei, X., et al. (2024). Convolutional neural network for oral cancer detection using improved tunicate swarm algorithm and image processing. *Scientific Reports*, 14(1), 28472. <https://doi.org/10.1038/s41598-024-79250-0>
12. Complete Smiles. (2025). AI research in oral disease detection: Key findings. Retrieved from <https://completesmilesbv.com.au/ai-research-in-oral-disease-detection-key-findings/>
13. Elmakaty, A., et al. (2023). Artificial intelligence in oral squamous cell carcinoma detection: A systematic review and meta-analysis. *Oral Oncology*, 137, 106293.
14. Zang, X., et al. (2022). A deep learning model using convolutional neural networks for automated caries detection in non-clinical settings. *Frontiers in Oral Health*, 3, 898765.
15. Warin, K., & Suebnukarn, S. (2024). Development of an oral cancer detection system through deep learning using a portable oral endoscope. *BMC Oral Health*, 24, 42.
16. Jeyaraj, P. R., & Nadar, E. R. S. (2024). Artificial intelligence and machine learning in oral cancer detection: A scoping review of modern diagnostic approaches. *Journal of Oral and Maxillofacial Pathology*, 28(1), 89–104.
